Autocorrelation
Autocorrelation is a useful statistic for assessing mixing of a Markov chain. Keanu provides a method of calculating autocorrelation on samples.
Example
Java
With a network defined, we can get the autocorrelation vertex A. The result is a tensor containing the autocorrelation at varying lags.
NetworkSamples posteriorSamples = Keanu.Sampling.MetropolisHastings.withDefaultConfig().getPosteriorSamples(
model,
model.getLatentVariables(),
100
);
DoubleTensor autocorrelation = posteriorSamples.getDoubleTensorSamples(A).getAutocorrelation();
When the samples are tensors, we need to specify the tensor index on which to calculate the autocorrelation.
For example, if the sample shape is [1,5]
we can evaluate the autocorrelation at index [0,1]
.
NetworkSamples posteriorSamples = Keanu.Sampling.MetropolisHastings.withDefaultConfig().getPosteriorSamples(
model,
model.getLatentVariables(),
100
);
DoubleTensor autocorrelation = posteriorSamples.getDoubleTensorSamples(A).getAutocorrelation(0, 1);
Python
It’s also possible to calculate the autocorrelation of samples in Python.
algo = MetropolisHastingsSampler(proposal_distribution='prior', latents=bayes_net.get_latent_vertices())
posterior_samples = sample(net=bayes_net, sample_from=bayes_net.get_latent_vertices(),
sampling_algorithm=algo, draws=100)
vertex_samples = posterior_samples.get('a')
ac = stats.autocorrelation(vertex_samples)
When the samples are ndarrays
the index on which to calculate the autocorrelation can be specified
as a tuple.
algo = MetropolisHastingsSampler(proposal_distribution='prior', latents=bayes_net.get_latent_vertices())
posterior_samples = sample(net=bayes_net, sample_from=bayes_net.get_latent_vertices(),
sampling_algorithm=algo, draws=100)
vertex_samples = posterior_samples.get(('a', (0, 1)))
ac = stats.autocorrelation(vertex_samples)